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Ot
stit*Ited abstract

Informed Test Component Weighting

Testing programs that report a single score based on multiple choice and performance
components must face the issue of how to derive the composite scores. This paper identifies and
logically evaluates alternative component weighting methods. It then examines composite
reliability and validity as a function of weights, component reliability, component validity and the
correlation of the components. Weighting can make a big difference when combining a highly
reliable test, such as a lengthy multiple-choice test, with a less reliable test, such as a short
constructed-response test. A rational process that identifies and considers trade-offs in
determining weights is suggested.
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Informed Test Component Weighting

Lawrence M. Rudner
Maryland Assessment Research Center for Education Success &

ERIC Clearinghouse on Assessment and Evaluation

In many assessment situations, multiple tests or subtests are administered and the results are
combined to form a single composite score. For example, today's commercially available
achievement tests report a composite reading score formed by combining literal comprehension
with inferential comprehension components. Other common uses of composite scoring can be
found in combining the verbal and mathematical reasoning ability components of the SAT to
form a composite score, interest inventories and personality tests, which often combine tests of
different traits and in employment decision-making which is generally based on a combination of
factors. Today, many large scale assessment programs are combining components that
incorporate traditional multiple-choice items with components that incorporate newer
performance items.

The manner in which composite scores are formed raises a variety of methodological and policy
issues. For example, do we add more weight to a longer but less reliable performance
assessment? Or should we add less weight? This problem is not new and a host of methods have
been proposed. A half of a century ago, Gulliksen (1950) devoted a 50 page chapter to the topic.
Thirty years ago, Wang and Stanley (1970) wrote a comprehensive 40 page review. Dawes
(1976) revised the problem in his classic article on equally weighted measures. More recently
Wainer and Thissen (1993) discussed the issue in the context of combining multiple-choice and
constructed-response tests. Most of the literature suggests that weighting doesn't matter.
Weighting does not appear to reduce overall error and the results of different weighting methods
are often highly correlated. The effect of weights on the validity of the composite score, however,
has not been adequately addressed.

This paper identifies and logically evaluates alternative methods for weighting tests. Formulas
are presented for composite reliability and validity as a function of component weights.
Concluding that weighting can make a big difference when combining a highly reliable test, such
as a lengthy multiple-choice test, with a less reliable test, such as a short constructed-response
test, a rational process that identifies and considers trade-offs in determining weights is

suggested.

Component Weighting Methods

As Gulliksen (1950) points out and Wainer and Thissen (1993) underscore

It should be noted that it is not possible to dodge the weighting problem if any decisions
are to be made. Occasionally, we hear the suggestion that scores simply be added



together without bothering about the problem of weighting. No matter what scores we
add, the problem is not avoided. (p 312)

Weighting methods are either implicit or explicit. This section identifies and briefly evaluates
some of the more appealing approaches. The interested reader is referred to Wang and Stanley
(1970) and Gulliksen (1950) for a more thorough reviews of non-IRT methods.

Implicit Approaches

Adding raw scores - Perhaps the simplest approach to combining test components is to simply
add together the total number of correct responses. If the tests are developed following a blue
print, then the number of items within each domain should be a fair representation of the
domain's relative importance. In theory, by adding raw scores, a 100 item test would carry twice
the weight of a 50 item test when the raw scores are combined. The logic, however, is faulty.
Suppose you have an easy 100 item test with an extremely small variance and a moderately
difficult 50 item test with a large variance. In this example, the 100 item test is like adding a
constant to the 50 item score and contributes little to the variance of the composite scores. The
100 item test is not weighted twice that of the 50 item test. The effective weight will be
proportional to the component variance. Another issue is that equal item weighting fails to
consider differences in item importance. A lengthy algebra solution cannot be considered equal

to recognizing an inequality on a multiple-choice test.

IRT Modeling - Rather than tackling the issue, one could simultaneously calibrate the items
across all components and use an IRT model to estimate each examinees ability on the composite
scale. A logical inconsistency arises, however. In order to incorporate most oftoday's operational
IRT models, one must assume the composite is unidimensional. If the construct is

unidimensional, then one should not be using the less efficient constructed-response items. If the
construct is not unidimensional, then one should not be using IRT as IRT models do not appear

to be robust to violations of the unidimensionality assumption (Dawadi, 1999; Harrison, 1986).
Deriving theta from simultaneously calibrated one parameter IRT items is equivalent to summing
the item scores. Deriving theta from a two parameter model is equivalent to weighting by the
discrimination of the items within each component. The three parameter model would be
influenced by both the discrimination parameter and the theta estimate.

Explicit Approaches

Weight by Difficulty - Instructors often weight items or sections of classroom tests based on their
feel for the task difficulty. The same concept can be applied with empirical data. The approach
appears to be attractive as it provides additional reward for mastering particularly difficult
concepts. However, the converse is also true. The method punishes students more severely for
missing these more difficult items. Weighting by easiness just reverses the penalties.

Reliability Weighting - Giving more reliable components heavier weights is intuitively
appealing. The error associated with the composite score would be less if the more reliable

measure were more heavily weighted. First, there is a problem of operationalizing these weights.
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As seen in equation (1) below, weighting by component reliability will not maximize composite
reliability. Second, as we will argue later, maximizing reliability is not necessarily a worthwhile
goal. If that is one's goal, then optimal weights can be determined using Monte-Carlo techniques
and equation (1) or by setting the first derivative of (1) with respect to wl/w2 to zero and solving.

Validity Weighting - A variety of methods can be used to maximize the validity of the composite
scores. Multiple regression provides component weights that maximize the correlation of the
composite with an external criterion. There is the well documented issue of shrinkage. The
regression optimizes weights for the given data set. The weights may be less than optimal for
other datasets. The validity coefficients themselves could be used as weights. This, however,
would be even less optimal as it fails to consider the intercorrelations among the predictors.
Further, determining a criterion in order to estimate validity coefficients is not always straight-
forward. As with maximizing reliability, maximizing validity may not be the most desirable goal.

Formulas for Composite Reliability and Validity

Let random variables X = [X1, X2] denote two components and random variable Y denote scores
on a criterion variable. Further let L= wIX, + w2X2 denote the weighted composite test score. To

simplify calculations, set variances equal to unity. As a result 61= 62 = 6y= 1.0, n12 = 612 and

= yi for i=1,2.

Wang and Stanley (1970, p. 672) provide a general formula for the reliability of a composite L
composed of n variables. Solving for n=2 variables and simplifying, we have the reliability of a
composite as a function of the weights, component reliabilities and the positive correlation
between the components.

PLL'

From (1), we can derive that:

w1P ip+W2V
2n

22,±2W1W2P 12

2 2

-14;1114)2+ 2W1W2p,2

(1)

a) the lowest possible value for the composite reliability is the reliability of the less
reliable component.

b) if the components are correlated then the composite reliability can be higher than
the reliability of either component.

c) if the component reliabilities are the same, then the composite reliability is
maximum when the weights are the same.

Winer (1971, p105) provides an equation for the squared product moment correlation between
criterion variable Y and L as the product of the variance-covariance matrix, the scalar array of
weights, and the scalar array of component-criterion variable covariances. Solving for n=2

-3-
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predictor variables and simplifying yields the multiple correlation of a composite with a criterion
variance as a function of the weights, component validities and the correlation between the
components.

wip y1+ W2P y2
P yL Vviii2+w22+2WW2P12

(2)

Linear regression provides the weights that maximize the correlation between a composite and a
criterion. Thus, the square root of the Multiple R associated with linear regression provides the
maximum value for (2).

max p =

From (2) and (3), we can deduce

2 2

Pyl+P y2 -2PyIP y2P 12

2

1 -p1212

(3)

a) the lowest possible value for the composite validity is the validity of the less valid
component

b) the composite validity can be higher than the validity of either component.
c) if the component validities are the same then the composite validity is maximum

when the weights are the same.
d) the maximum possible composite validity increases as the component correlation

decreases.

Examples

This section provides an example to illustrate the effect of component weights on the composite
test reliability and composite test validity. The analysis is based on the Biology AP examination
as reported by Wainer and Thissen (1993). Component 1 is comprised of multiple choice items
with a reliability of .93. Component 2 is comprised of constructed response items with a
reliability of .68. The correlation of the two is .73 (0.92 unattenuated).

From Table 1, one can see there is very little change in the reliability as the weights change from
00 to 1:1. The reliability starts to drop precipitously as extra weight is given to the less reliable
constructed-response component. Here, the inclusion of the constructed-response component
hurts reliability, regardless of the weighting.

-4-
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Table 1: Composite test reliability as a function of select weights

weight WI/W2 0°
8/1 4/1 2/1 1/1 1/2 1/4 1/8 0

reliability fILL' .93
.93 .94 .92 .89 .83 .77 .73 .68

Looking at reliability data from a large number of composite tests where the longer multiple-
choice component had a higher reliability, Wainer and Thissen (1993) concluded that "whatever
is being measured by the constructed-response section is measured better by the multiple choice
section. These seven tests are but a sample. We have never found any test .. for which this is not
true." These powerful words will hold as long as both sections have comparable validity and the
constructed response section has lower reliability.

But, what if we value the content of the constructed-response more? That is, what if that section
is more highly correlated with a criterion than the multiple choice section? McCornack (1956)
discussed this over 40 years ago. The studies of his day mostly looked at the effect of weighting
components with high reliability on the composite reliability and concluded that weighting
doesn't matter. McCornack criticized these studies for not considering composite validity. The
criticism also applies to Wainer and Thissen.

Differential component validity for the Biology AP examination is modeled in Table 2 and
Figure 1. The correlation of the more reliable multiple-choice component with the criterion is set,
for this example, to 0.60 (.62 unattenuated), while the validity coefficient for the less reliable
constructed-response component is set to .80 (.97 unattenuated). From Figure 1, one can see that
composite reliability rises steadily as more weight is given to the more reliable multiple-choice
component and starts to level off when w 1=1.5w2. Composite validity slowly drops as wi
approaches .7w2 and then starts to drop more precipitously. Clearly, in this example, the weights
have a profound effect on validity and reliability.

Table 2: Component characteristics for Figure 1

Validity Reliability

Component 1 .60 .93

Component 2 .80 .68

fi12 = .73
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Validity and reliability
of a weighted composite
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Contrary to the oft-quoted principle that square root of the reliability places an upper limit on
validity, composite validity is increasing while composite reliability is decreasing in this
example. This is not a mistake in formulas (1) and (2). That principle doesn't apply here as the
components are not highly correlated. As astutely noted by Feldt (1997), the principle applies
when the reduced reliability represents a similar, but shorter test. Here, by changing the weights,
we have changed the essential character of the test; our test now measures something different,
the true scores represent a different construct.

Discussion

We have argued that implicit weighting methods may not yield the desired results and that
explicit weighting can seriously impact composite validity and composite reliability. Further,
weighting can have unsatisfactory consequences. Maximizing reliability can lead to lower
validity. Maximizing validity can lead to lower reliability.

The question remains, how does one weight two components? As argued by Kennedy and
Walstad (1997), weighting should be a rational process evaluating contributions and the trade-
offs. In Figure 1, for example, if one feels consistency is extremely important and that a validity
coefficient of .75 is adequate, then a w,/w2 between 1.2 and 2.0 should be supported. Conversely,
if one feels validity is more important and that a reliability of about .75 is adequate, then
weighting component 2 more heavily with a wi/w2 of about .5 should be adopted. In both cases,
the trade offs between reliability and validity can be rationally considered.

It should be noted from formulas (1) and (2) that the ends of the composite validity and
composite reliability curves asymptotically approach the individual component validities and
reliabilities. As the correlation between the components goes up, the curves becomes less peaked.

-6-
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As the correlation approaches unity, one could simply maximize reliability. Thus, if the
component validities are each satisfactory or the components are fairly intercorrelated, the
different weights will not make much difference on composite validity. We suspect this will be
the case with many large scale assessments that incorporate alternative item types. Nevertheless,
one needs estimates of component validity, or a very high component correlation, before one can
dismiss the effect of component validity on the validity of the composite scores.

The absence of a natural criterion variable does not mean data cannot be collected and used to
help instruct the decision. Surrogate markers for clinically defined end-points (Prentice, 1989)
are commonly used in medical research. Traditional approaches for conducting content validity
studies based on ratings of item-objective congruence and relevance are applicable. A variety of
new quantitative techniques for conducting content validity studies based on multidimensional
scaling have been offered (Sireci, 1998). Value judgements can also be employed instead of the
criterion measure, as long as the value judgement is a statement of worth and not perceived
difficulty. Again, formulas (1) and (2) and a graph similar to Figure 1 can be used to help make
the weighting decision policy.

This research was supported with funds from the Maryland State Department of Education. The
views and opinions expressed in this paper are those of the author and do not necessarily reflect
those of the Maryland State Department of Education. The author is indebted to William D.
Schafer and James S. Roberts, Department of Measurement, Statistics and Evaluation at
University of Maryland for their help and comments on earlier drafts of this paper.
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